Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1196024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711698

RESUMO

Sodium-induced potassium (K+) deficiency is more prevalent in salt-affected soils. Plants experience K+ starvation thus cytosolic K+/Na+ ratio is lowered, which is a prerequisite for their survival. K+ enrichment in crops can be acquired via K-solubilizing bacteria as a sustainable green agriculture approach. This study was conducted to explore potent K-solubilizing bacteria from the rhizosphere of wheat, rice, and native flora grown in salt-affected soils in two distinct regions of Pakistan. The aim of this work was to evaluate the contribution of microbial consortiums to the improvement of K+ assimilation and cytosolic K+/Na+ ratios in rice crops under saline-sodic conditions. Among 250 bacterial isolates, 9 were selected based on their salt (11% NaCl) and alkali (9) tolerance and K-solubilization indices (1.57-5.67). These bacterial strains were characterized for their plant growth-promoting traits and identified based on 16S rRNA gene sequencing. A consortium of five strains, namely, Enterobacter hormaechei, Citrobacter braakii, Pseudomonas putida, Erwinia iniecta, and Pantoea agglomerans, was used as a bio-inoculant to evaluate its role in K+ assimilation, cytosolic K+/Na+ ratio, and subsequent yield enhancement in rice grown under saline-sodic conditions. The impact of applied consortium on rice was assessed under variable salt levels (Control, 40, 80, and 120 mM) in a pot experiment and under natural saline-sodic conditions in the field. Plant agronomical parameters were significantly higher in the bacterial consortium-treated plants, with a concomitant increase in K+-uptake in root and shoot (0.56 and 0.35 mg g-1 dry wt.) of the salt-tolerant rice variety Shaheen. The root K+/Na+ ratio was significantly improved (200% in 40 mM and 126% in 80 mM NaCl) and in the shoot (99% in 40 mM and 131% in 80 mM) too. A similar significant increase was also observed in the salt-susceptible variety Kainat. Moreover, grain yield (30.39 g/1,000 grains wt.) and biomass (8.75 g) of the rice variety Shaheen, grown in field conditions, were also improved. It can be concluded that K-solubilizing bacteria can be used as bio-inoculants, contributing to growth and yield increment via enhanced K-assimilation and cytosolic K+/Na+ ratio in rice crops under salt stress.

2.
Front Microbiol ; 14: 1207784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455747

RESUMO

Adaptations of green technologies to counter abiotic stress, including salinity for crops like wheat by using halotolerant microbes, is a promising approach. The current study investigated 17 salt-affected agroecological zones from the Punjab and Sindh provinces of Pakistan to explore the potential of indigenous microbial flora, with their multiple biochemical characteristics in addition to plant growth promoting (PGP) traits, for enhanced wheat production in saline areas. Initially, 297 isolated pure bacterial colonies were screened for salt tolerance, biochemical, and PGP traits. Three bacterial strains belonging to Pantoea spp. and Erwinia rhaphontici with possession of multiple characteristics were selected for the development of the halotolerant bacterial consortium. Inoculation of two local wheat varieties, Faisalabad 2008 and Galaxy 2013, with the consortium for in vitro seed germination assay and sand microcosm experiments exhibited significant improvement of selected plant growth parameters like germination percentage and root structure. Two previously reported PGP fungal strains of Trichoderma harzianum and T. viridae were also used as fungal consortium separately for pot experiments and field trials. The pot experiments exhibited a positive correlation of consortia with metabolic viz. catalase, peroxidase, and proline and agronomical parameters including shoot length, dry weight, number of spikes, spike length, and 100 grain weight. To evaluate their performance under natural environmental conditions, field trials were conducted at three salt-affected sites. Agronomical attributes including days of flowering and maturity, flag leaf weight, length and width, shoot length, number of spikes, spike length, spike weight, number of seeds spike-1, 1,000 grain weight, and plot yield indicated the efficiency of these microbes to enhance wheat growth. Concisely, the bacterial consortium showed better performance and Faisalabad 2008 was a more resistant variety as compared to Galaxy 2013. Initial promising results indicate that further extensive research on indigenous microbes might lead to the development of Pakistan's first saline-specific biofertilizers and sustainable eco-friendly agriculture practices.

3.
Microbiol Resour Announc ; 10(38): e0078721, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34553999

RESUMO

Citrobacter braakii AN-PRR1 is a potential salt-tolerant, plant growth-promoting rice rhizobacterium isolated from Pakistani soil. The 4.9-Mb draft genome sequence contributes to its taxonomic classification and will reveal the genes putatively responsible for its osmoprotectant and plant growth-promoting activity.

4.
Front Microbiol ; 11: 2019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117299

RESUMO

Soil salinity has emerged as a major obstacle to meet world food demands. Halo-tolerant plant growth promoting rhizobacteria (PGPR) are potential bioinoculants to enhance crop productivity in saline agriculture. Current work was aimed at studying individual or synergetic impact of salt tolerant PGPR on wheat growth and yield under saline conditions. A pot experiment was conducted on two wheat genotypes (Aas-11; salt tolerant and Galaxy-13; salt sensitive) inoculated with Pseudomonas fluorescence, Bacillus pumilus, and Exiguobacterium aurantiacum alone and in consortium. The salt tolerant variety (Aas-11) exhibited maximum root fresh (665.2%) and dry biomass (865%), free proline (138.12%) and total soluble proteins (155.9%) contents, CAT (41.7%) activity and shoot potassium uptake (81.08%) upon inoculation with B. pumilus, while improved shoot dry weight (70.39%), water (23.49%) and osmotic (29.65%) potential, POD (60.51%) activity, enhanced root potassium (286.36%) and shoot calcium (400%) were manifested by E. aurantiacum. Highest shoot length (14.38%), fresh weight (72.73%), potassium (29.7%) and calcium (400%) acquisition as well as glycinebetaine (270.31%) content were found in plants treated with PGPR consortium. On the other hand, in the salt sensitive variety (Galaxy-13), P. fluorescens treated plants showed significantly improved leaf-water relations, glycinebetaine (10.78%) content, shoot potassium (23.07%), root calcium (50%) uptake, and yield parameters, respectively. Plant root length (71.72%) and potassium content (113.39%), root and shoot fresh and dry biomass, turgor potential (231.02%) and free proline (317.2%) content were maximum upon PGPR inoculation in consortium. Overall, Aas-11 (salt tolerant variety) showed significantly better performance than Galaxy-13 (salt sensitive variety). This study recommends B. pumilus and E. aurantiacum for the salt tolerant (Aas-11) and P. fluorescens for the salt sensitive (Galaxy-13) varieties, as potential bioinoculants to augment their growth and yield through modulation of morpho-physiological and biochemical attributes under saline conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...